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ABSTRACT

Obstacle-avoiding rectilinear Steiner minimal tree (OARSMT) construction is becoming one

of the most sought after problems in modern design flow. In this thesis we present an algorithm

to route a multi-terminal net in the presence of obstacles. Ours is a top down approach which

includes partitioning the initial solution into subproblems and using obstacle aware version of

Fast Lookup Table based Wirelength Estimation (OA-FLUTE) at a lower level to generate

an OAST followed by recombining them with some backend refinement. To construct an

initial connectivity graph we use a novel obstacle-avoiding spanning graph (OASG) algorithm

which is a generalization of Zhou’s spanning graph algorithm without obstacle [18]. The

runtime complexity of our algorithm is O(n log n). Our experimental results indicate that it

outperforms Lin et al. [9] by 2.3% in wirelength. It also has 20% faster run time as compared

with Long et al. [11], which is the fastest solution till date.
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CHAPTER 1. INTRODUCTION

Following placement, the routing process determines the precise paths for nets on the chip

layout to interconnect the pins on the circuit blocks or pads at the chip boundary. As we move

in to nanometer era the routing is becoming an extremely complex problem.

For routing of a multi-terminal net i.e. a net connecting more than two pins, one naive

approach is to decompose each net in to a set of two pin connections, and then route the

connections one by one. The quality of routing obtained with this approach depends upon

the decomposition step and often leads to suboptimal solutions. A better and more natural

approach is to construct a Steiner tree. Steiner Tree is a tree connecting a set of vertices

using extra intermediate vertices in order to reduce the length of tree. This tree can also be

termed as a multi-terminal net. Rectilinear Steiner minimal tree (RSMT) is a Steiner tree

which contains rectilinear lines and achieves a minimum possible wirelength.

RSMT construction is a fundamental problem that has many applications in VLSI design.

In early design stages like physical synthesis, floorplanning, interconnect planning and place-

ment it can be used to estimate wireload, routing congestion and interconnect delay. In global

and detailed routing stages, it is used to generate the routing topology of each net. Many

previous work have addressed this problem.

With the advent of re-usability using Intellectual Property (IP) sharing, the chip in today’s

design is completely packed with fixed blocks such as IP blocks, macros, etc. These fixed blocks

are termed as immovable obstacles. Hence, routing of multi-terminal nets in the presence of

obstacles i.e. OARSMT construction has become a quintessential part of the design and has

been studied by many (e.g., [4, 13, 5, 14, 16, 9, 12, 11, 7, 8, 10]). As pointed out by Hwang

[6], in the absence of obstacles multi-terminal net routing corresponds to the RSMT problem
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which is NP-complete. The presence of obstacles in the region makes multi-terminal routing

problem even harder.

1.1 Related Work

In past several efforts have been made for solving this problem. We can categorize them

broadly on the basis of two aspects of their solution for OARSMT construction. First, connec-

tivity information amongst various pins and corners of obstacles is acquired using some kind

of a graph. Second, Steiner tree is constructed between pin vertices avoiding obstacles with

the help of connectivity graph obtained earlier.

1.1.1 Classification based on Graph Structure

There are three categories based on structure of the graph constructed.

(a) (b)

Figure 1.1 An illustration of OARSMT construction using Escape Graph:

(a) Escape Graph (b) OARSMT constructed from Escape

Graph

1. Escape Graph: Ganley et al. [3] introduced a strong connection graph called Escape

Graph. Escape graph is a graph obtained by extending the horizontal and vertical seg-

ments intersecting at any pin vertex until the boundary of bounding box. Fig. 1.1(a)

depicts an example illustrating an Escape Graph. [3] also proved that all Steiner points

in the optimal solution can be found in this graph. It is evident from Fig. 1.1(b) all the
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Steiner points lie on escape graph shown in Fig. 1.1(a). Shi et al. [14], Hu et al. [5] [4]

and Liang et al. [8] used escape graph to capture connectivity information. The problem

with this technique is that the number of edges in this graph tends to be of the order of

O(n2) which makes them slower than other algorithms.

(a) (b) (c)

Figure 1.2 OARSMT construction using Delaunay Triangulation: (a)

Delaunay Triangulation Graph (b) Obstacle-avoiding mini-

mum spanning tree (OAMST) (c) OARSMT constructed from

OAMST

2. Delaunay Triangulation: A Delaunay triangulation DT(P) for a set of P vertices in a

plane is a triangulation such that no vertex in P is inside the circumcircle of any triangle

in DT(P). There is an interesting property associated with delaunay triangulation, a

minimum spanning tree is a subset of delaunay triangulation for a set of points P. Jiang et

al. [7] exploited this property to obtain connectivity graph using delaunay triangulation.

In presence of obstacles a DT graph can also lead to O(n2) edges which creates the same

difficulty as escape graph.

3. Obstacle Avoiding Spanning Graph: [13, 9, 16, 12, 11] are based on various forms of

obstacle-avoiding spanning graphs. Shen et al.[13] proposed a form of OASG that only

contains a linear number of edges which is also adopted in [16]. The construction of OASG

is discussed in detail in later chapter. The property of OASG that makes it useful for

creating connectivity graph is that an OASG must contain at least on minimum spanning

tree. Later Lin et al.[9] proposed adding missing “essential edges” to Shen’s OASG.

Unfortunately, it increases the number of edges to O(n2) in the worst case (O(n log n)
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in practice) and hence the time complexity of later steps of OARSMT construction is

increased to a large extent. In view of that, Long et al. [12, 11] proposed a quadrant

approach to generate an OASG with a linear number of edges. But as we will see later,

the OASG generated by Long’s approach is not ideal.

1.1.2 Classification based on Steiner Tree Construction

We can also categorize our antecedants by the second aspect in their solution mentioned

above.

1. Ant Colony Optimization: Hu et al. [5] [4] and Wu et al. [16] use ant colony opti-

mization (ACO) running on Escape Graph or Track Graph to form steiner tree. The

basic motivation of ACO is to mimic the cooperative behavior of ants to achieve complex

computations which consists of multiple iterations. In each iteration one or more ants

are allowed to execute a movement, leaving behind a pheromone trail for other to follow.

An ant traces out a single path, probabilistically selecting only one edge at a time (in a

graph), until an entire solution is obtained. Each separate path can be assigned a cost

metric and the sum of all the individual costs defines the function to be minimized by

ACO. Heuristics indicate that this approach is quite slow in terms of CPU runtime and

does not yield good quality in terms of wirelength as compared with other methods.

2. Maze Routing: Maze routing based approaches to find obstacle-avoiding path for a 2-

pin net are very common. The multi-terminal variant of this approach is also there but

considered very slow in terms of complexity. Recently Liang et al. [8] proposed a maze

routing approach running on simplified Hannan grid which is similar to escape graph.

However their results indicate that CPU runtime as obtained by them is still very slow

as compared with other approaches.

3. Minimum spanning tree: Shen et al. [13] and Lin et al. [9] propose refining obstacle-

avoiding minimum spanning tree (OAMST) to obtain Steiner tree. To create OAMST

they suggest building complete graph between pin vertices and then replacing the edges by
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their shortest path obtained from OASG. Although this methodology appeals in general,

constructing complete graph results in higher order complexity, which is discouraging.

Long et al. [12] improved their approach by using the extended version of Dijkstra and

Kruskal’s algorithm on OASG to obtain Minimum Terminal Spaning Tree (MTST) and

later refining it to form Steiner Tree. Their approach has been the fastest till now but

has worst wirelength than [9] which seems to be a concern.

1.2 Our Contribution

In this work, we develop a new O(n log n) time algorithm for OARSMT generation by

leveraging FLUTE[2]. FLUTE is a very fast and robust tool for the rectilinear Steiner minimal

tree problem without obstacle. It is widely used in many recent academic global routers.

FLUTE by its design cannot handle obstacles. A simple strategy to generate an OARSMT

would be to call FLUTE once and legalize the edges intersecting with obstacles. Unfortunately,

the OARSMT obtained by such a simple strategy can be far from optimal. A better strategy

is to break the Steiner tree produced by FLUTE on overlapping obstacles, recursively call

FLUTE for local optimization, and then combine all locally optimized subtrees at the end.

However, as the number of pins increases or if the routing region is severely cluttered with

obstacles, the quality of the solution produced will degrade because it lacks a global view of

the problem. To tackle this, we propose a partitioning algorithm with a global view of the

problem at the top level to divide the problem into smaller instances that can be effectively

handled.

To guide the partitioning algorithm, we propose to use a sparse obstacle-avoiding spanning

graph (OASG) to capture the proximity information amongst the pins and corners of obstacles.

In this thesis, we present a novel octant approach to generate an O(n)-edge OASG with more

desirable properties.

Different from [13, 9, 12, 11] which directly use an OASG to construct an OARSMT, we

only use an OASG to guide the partitioning and construct our final OARSMT using FLUTE.

We note that a shortcoming of constructing an OARSMT from an OASG directly is that it
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tends to follow obstacle boundaries and make detours towards obstacle corners. This makes it

easier to lead to congestion when routing many nets in a design. (Adding essential edges as in

[9] will help but will result in O(n2) edges as an escape graph.) On the other hand, since we

only utilize the OASG to guide our partitioning and use FLUTE for local optimization, the

OARSMT thus constructed will follow an obstacle boundary only when absolutely necessary.

In addition, the OASG generated by our proposed octant approach has a linear number of

edges like Long’s[12, 11] and possesses other desirable properties not found in Long’s OASG.

For example, our OASG is guaranteed to contain at least one minimum spanning tree in the

absence of obstacle while Long’s OASG does not have such a guarantee.
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CHAPTER 2. ALGORITHM

Our OARSMT construction algorithm can be distinctly divided in five stages.

Stage 1: OASG Generation. First, we obtain the connectivity information between the

pins and obstacle corner vertices using a novel octant OASG generation algorithm. Section 2.1

describes the OASG algorithm in detail.

Stage 2: OPMST Generation. Based on the OASG, we construct a minimum terminal

spanning tree (MTST) using the approach mentioned in [17] and then obtain an obstacle pe-

nalized minimal spanning tree (OPMST) from the MTST. Section 2.2 talks about OPMST

construction in detail.

Stage 3: OAST Generation. We partition the pin vertices based on the OPMST con-

structed in the previous step. After partitioning, we pass the subproblems to OA-FLUTE

which calls FLUTE recursively to construct an obstacle-aware Steiner tree (OAST). Section

2.3 talks about the partitioning and OA-FLUTE in more detail.

Stage 4: OARSMT Generation. In this step, we rectilinearize the pin-to-pin connections

avoiding obstacles to construct an OARSMT. Section 2.4 discusses OARSMT construction.

Stage 5: Refinement. To further reduce the wirelength, we perform V-shape refinement

on the OARSMT. Details for it can be found in Section 2.5.
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Figure 2.1 Outputs at various stages for benchmark RC01: (a) OASG (b)

MTST (c) OPMST (d) OARSMT.

2.1 OASG Generation

Definition 1 Given a set of pin vertices P and a set of corners C of obstacles O, an obsta-

cle avoiding spanning graph (OASG) is undirected graph on vertex set P ∪ C, where no edge

intersects with an obstacle in O and it contains at least one minimum spanning tree.

2.1.1 Previous Approaches

Zhou et al. [18] described a spanning graph generation algorithm with O(n) edges in the

absence of obstacles. We prove that their approach can be seen as a special case of our obstacle-

avoiding spanning graph generation algorithm. Here we start with a few definitions.

Definition 1 Given an edge e(u, v) and an obstacle b, e is completely blocked by b if ev-
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ery monotonic Manhattan path connecting u and v intersects with a boundary of b.

Definition 2 Given a set of m pins and k obstacles, an undirected graph G = (V,E) con-

necting all pin and corner vertices is called an OASG if none of its edges is completely blocked

by an obstacle.

Although Definition 2 does not necessitate a linear number of edges for an OASG, in or-

der to have a fast run time it is desired to limit the solution space. In the past, there have

been a couple of efforts to construct an OASG with a linear number of edges. Shen et al. [13]

suggested a quadrant approach in which each point can connect in four quadrants in the plane

formed by horizontal and vertical line going through the point. Shen did not clearly explain

their algorithm in the paper.

Long et al. [12] recently described a novel quadrant approach which is a modified version

of [18] for OASG generation with a linear number of edges in O(n log n) time. They suggested

scanning along ±45◦ lines and maintaining an active vertex list, a set of vertices in the graph

which are not yet connected to their nearest neighbor, similar to [18]. After scanning any

vertex v, they search for its nearest neighbor u in the active vertex list, such that the edge

(u, v) is not completely blocked by any obstacle in the graph. This is followed by deletion of

u from the list and addition of v in the list.

According to Lemma 1 in [12] the Manhattan connection between vertex (u, v) is considered

completely blocked by an obstacle boundary (a, b) if y-coordinate of (a, b) lies between y-

coordinates of v and u and (a, b) is present in active obstacle boundary list. In other words

we can say that (a, b) lies inside 4pqu, refer Fig.2.2(a) However, we found that there is a

fault in this lemma. Consider a scenario described in Fig.2.2(b). Following explanation above

edge (u, v) will be blocked by an obstacle (a, b). However, (a, b) does not actually block (u, v).

The result of such incorrect blockage would imply that u will not be connected to its nearest

neighbor and would remain active i.e., it has not found its neighbor in Quad 1. This fault

can cause u to form an edge in further iterations which can overlap with an obstacle violating
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(a) (b)

Figure 2.2 Bug in algorithm proposed in [12] (a) Taken from [12] (b) Spe-

cific scenario for lemma 1 in [12]

Definition 1. We reported this bug to them and they came up with a fix in [11]. In that they

mentioned checking for x-coordinate of Bottom Left corner of obstacle to be on left of u which

seems to be correct solution for the above mentioned bug.

To summarize their algorithm has following shortcomings. First, their algorithm is not

symmetric, i.e., the nearest neighbor for any vertex in a quadrant is contingent upon the

direction of scanning which means they have to scan along all four quadrants of a vertex in

order to capture its connectivity information. Second, unlike [18] in the absence of obstacles,

their algorithm cannot guarantee the presence of at least one MST in the plane. Third, their

algorithm cannot handle abutting obstacles due to minor mistakes in the inequality conditions.

2.1.2 Our Approach for OASG

Looking at the above mentioned issues we conceived that rather than modifying Zhou et

al’s [18] approach, it will be best to simply build on their idea. Therefore, we propose an algo-

rithm based on octant partition exhibiting uniqueness property similar to their algorithm. We

reiterate the definition given in their paper. The notation ||pq|| represents rectilinear distance

between p and q.
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Definition 3 [18] Given a point s, a region R has the uniqueness property with respect to

s if for every pair of points p, q ∈ R, ||pq|| <max(||sp||,||sq||). A partition of space into a

finite set of disjoint regions is said to have the uniqueness property if each of its regions has

the uniqueness property.

(a) Pin vertex (b) Obstacle corner

Figure 2.3 Octant partition for a pin vertex and an obstacle corner

Fig. 2.3(a) and Fig. 2.3(b) describes octant partition for a pin vertex and an obstacle

corner, respectively. It is proved in [18] that octant partition exhibits the uniqueness property.

Imagine three points s, p and q such that ||sp|| < ||sq|| where points p and q lie in Ri of s. As

Ri has the uniqueness property, it implies ||pq|| < ||sq||. Since the longest edge of any cycle

should not be included in a MST, we can still guarantee that a MST exists in an OASG that

does not include edge (s, q).

Another interesting property of octant partition is that a contour of equidistant points from

any point forms a line segment in each region. In regions R1,R2,R5,R6, these segments are

captured by an equation of the form x + y = c; in regions R3,R4,R7,R8, they are described by

the form x−y = c. Now this property can be exploited when we generate an obstacle-avoiding

spanning graph.

The pseudo code for OASG generation for R1 is provided in Fig. 2.4. As R1 and R2 both

follow the same sweep sequence we process them together in one pass. It is worth noting that

our algorithm is exactly symmetrical as it does not depend on the direction of scanning. If any
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Algorithm: OASG generation for R1

1 Aactive = Abottom = Aleft = ∅
2 for all v ∈ V in increasing (x + y) order
3 S(v) = ∅
4 for all u ∈ Aactive which have v in their R1 do
5 Add u to S(v)
6 end for
7 Connect v to the nearest point u∗ ∈ S(v) such that

e(u∗, v) is not completely blocked
by obstacle boundaries in Abottom and Aleft

8 Delete all points in S(v) from Aactive

9 if v is a bottom left corner then
10 Add the bottom boundary containing v to Abottom

and the left boundary containing v to Aleft

11 else if v is a top left corner then
12 Delete the left boundary containing v from Aleft

13 else if v is a bottom right corner then
14 Determine the bottom boundary B containing v
15 Delete B from Abottom

16 Delete from Aactive all points which are
completely blocked by B

17 end if
18 Add v to Aactive

19 end for

Figure 2.4 Pseudo code for OASG generation algorithm

point v is the nearest neighbor of u in R1, it implies that u is the nearest neighbor of v in R5

which reduces our sweep iterations. For any point, we only need to sweep twice to determine

its connectivity information once for R1/R2 and once for R3/R4.

For octants R1 and R2, we sweep on a list of vertices in V which contains both pins as well

as obstacle corners with respect to increasing (x + y). During sweeping we maintain an active

vertex list Aactive. An active vertex is a vertex whose nearest neighbor in R1 still needs to be

discovered.

For the currently scanned vertex v, while looking in R5 of v we extract a subset S(v) from

Aactive. Any node u in this subset S(v) has v in R1 (lines 3 to 6). We connect v to its nearest

neighbor u∗ in S(v) for which, e(u∗, v) is not completely blocked (line 7). After connecting

with the nearest point we delete all the points in S(v) from Aactive (line 8) and add v to Aactive
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(line 18).

In order to determine if an edge is blocked by an obstacle, we maintain two active obstacle

boundary lists, Abottom for the bottom boundaries and Aleft for the left boundaries. It is

evident that if an edge is blocked by an obstacle in R1, it will intersect with either its bottom

or its left boundary. Next, if our scanned vertex is the bottom left corner of an obstacle,

its bottom boundary is added to Abottom and its left boundary is added to Aleft. It implies

that both the left and the bottom boundaries of that obstacle become active. When we come

across the top left (bottom right) corner, the corresponding boundary is removed from Aleft

(Abottom) implying that the left (bottom) boundary for that obstacle becomes inactive at that

point (lines 12 and 15).

Figure 2.5 Completely blocked vertices

To explain lines 13 to 17, let us refer to Fig. 2.5 where vertex b is the bottom right corner

of an obstacle. It is easy to see that if any vertex u lying within the 45 − 45 − 90 triangle

shown is still in Aactive after scanning b, it can be removed from Aactive. Since in this case all

vertices in R1 of u are completely blocked from u by the obstacle.

Lemma 1 Zhou et al’s algorithm [18] is a special case of our OASG generation algorithm

If we consider a case which has no obstacle, then we can simply ignore the blockage check

in line 7 and lines 9 to 17 from the algorithm in Fig. 2.4. The resulting algorithm would be

exactly the same as the algorithm in [18].
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2.1.3 An O(n log n) Implementation

We first show how to perform the following fundamental operations in the OASG generation

algorithm in O(log n) time: 1) Given a vertex v, find the subset of points in Aactive which have

v in their R1; 2) given an edge, check if it is completely blocked by any obstacle boundary in

Abottom or Aleft; and 3) given a bottom boundary of an obstacle, find all points in Aactive which

are completely blocked by the boundary. We address these issues one by one in the following

paragraphs.

To find the subset of Aactive which have a given point in their R1, we need the following

lemma.

Lemma 2 [18] For any two points p and q in the active set, we have xp 6= xq, and if xp < xq

then xp − yp ≤ xq − yq.

We arrange Av1 in increasing order of x. Utilizing Lemma 2, to find the subset of points

which have v in their R1, we first find largest x such that x ≤ xv. We then proceed in decreas-

ing order of x until x− y < xv − yv. Any point in between has x ≤ xv and x − y ≥ xv − yv,

and hence has v in its R1. We use balanced binary search tree to implement Aactive in order

to have O(log n) query operation.

An edge e(u, v) formed by points (xu, yu) and (xv, yv) is completely blocked by a bottom

obstacle boundary (a, b) formed by the points (xa, yh) and (xb, yh), if and only if, yu < yh < yv,

xa < xu, and xb > xv. Note that at line 7, all bottom boundaries satisfying the condition must

present in the list Abottom. We use the balance binary search tree data structure for Abottom

with the y-coordinate of a boundary as a key value. Every attempt to search for an obstacle

boundary between yu and yv in Ab takes O(log n) time. Checking if an edge is completely

blocked by a left boundary can be done similarly.

To determine all the completely blocked vertices u in Aactive by a horizontal boundary (a, b)

in line 16, we need to check if yu < yh, xa < xu and xu − yu + yh ≤ xb (the lightly shaded

regions in Fig. 2.5). Since we already have Aactive as a sorted list in increasing x we can check
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all points which lie between xa and xb and test for the above conditions to see if they are

completely blocked.

The loop from line 2 to line 19 will repeat n times. Lines 2–6 and 8–18 can all be performed

in O(log n) time. To analyze the total run time of line 7, note that each u ∈ V will only be

added to some S(v) at most once in line 5. Then it will be removed from future consideration

in line 8. Corresponding to each u added, the blocking of one edge needs to be checked in line

7. Hence totally n edges are checked. In conclusion, the total run time of the algorithm is

O(n log n).

2.2 OPMST Generation

Based on OASG generated in previous step, we create an obstacle penalized minimum

spanning tree (OPMST). An OPMST is an MST connecting a set of pin vertices, where the

weight of any edge between two pins is the length of obstacle avoiding path between them.

Constructing an OPMST is a two step process.

2.2.1 MTST Generation

A minimum terminal spanning tree (MTST) is a tree which connects all pin vertices and

has the smallest possible length. Since MTST is directly obtained from OASG, it is inherently

obstacle avoiding tree. Shen et al. [13] and Lin et al. [9] both use an indirect approach for

this step. They first construct a complete graph over all pin vertices where the edge weight

is the shortest path length between the two pin vertices. On this complete graph they use

either Prim’s or Kruskal’s algorithm to obtain a MST. Although it is effective, the approach

described above seems to be an overkill as it is unnecessary to construct a complete graph

when we already have OASG. Back in 80’s, Wu et al. [17] suggested a method using Dijkstra’s

and Kruskal’s algorithms on a graph similar to an OASG to obtain a MTST. Recently, Long

et al. [11] adopted their approach to solve the problem on the OASG.

Our approach is based on the extended Dijkstra’s algorithm and the extended Kruskal’s

algorithm as defined in [11]. For every corner vertex in the OASG, we want to connect it
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with the nearest pin vertex. This can be easily done using Dijkstra’s shortest path algorithm

considering every pin vertex as a source.

Function: Extended-Dijkstra(G)
Input: A non-negative weighted graph G
Output: A Forest of m trees

1 Heap Hv = φ
2 For Each(vertex u of G)
3 Set u.dist to 0 if u is a pin vertex, +∞
4 Hv.insert(u, u.dist)
5 u.parent = u
6 Make-Set(u)
7 End
8 While Hv is not empty Begin
9 u = Hv.extractMin()
10 Set-Union(u, u.parent)
11 For Each edge e(u, v) of G Begin
12 If v.dist > u.dist + e.length Begin
13 v.dist = u.dist + e.length
14 v.parent = u
15 Hv.decreaseKey(v)
16 End
17 End
18 End
19 For Each vertex u of G Begin
20 u.root = Find-Set(u)
21 End

Figure 2.6 Pseudo code for the Extended-Dijkstra [11]

Fig 2.6 describes pseudo code for Extended-Dijkstra Algorithm. This pseudo code is taken

from [11] and included here for completion. It is same as Dijkstra algorithm except for a

difference in line 3 where every pin vertex is explicitly assigned with 0 value to its distance

parameter i.e. making it a source.

After running the extended Dijkstra’s algorithm we are left with a forest of m trees, m

being the number of pin vertices. The root of every tree in the forest obtained above is a pin

vertex. In order to connect all disjoint trees we use the extended Kruskal’s algorithm on the

forest. A priority queue Hbe is used to store the weights of all possible edges termed as bridge

edges in [11] which can be used for linking the trees.
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Function: Extended-Kruskal(G)
Input: A non-negative weighted graph G

A Forest of m trees
Output: MTST, Tmerge

1 Heap Hbe = φ
2 Merging Tree Tmerge = φ
3 For Each edge e(u, v) of G
4 If u.root 6= v.root Begin
5 Hbe.insert(e, u.dist + e.length + v.dist)
6 End
7 End
8 While(Hbe is not empty Begin)
9 e(u, v) = Hbe.extractMin()
10 s1 = Find-Set(u)
11 s2 = Find-Set(v)
12 If s1 6= s2 Begin
13 Connect MTST edge eMTST (u.root, v.root)
14 s = Set-Union(s1, s2)
15 s.edge = eMTST

16 Tmerge.merge(s, s1, s2)
17 End
18 End
19 End

Figure 2.7 Pseudo code for the Extended-Kruskal [11]

Definition 4 [11] An edge e(u, v) is called a bridge edge if its two end vertices belong to

different terminal trees.

From Definition 4, it can be deduced that if each tree was a single vertex in the graph then

bridge edges will be the edges connecting these vertices and we can use Kruskal’s algorithm

to obtain a MST in such a graph. The extended Kruskal’s algorithm is simply an extended

version of the original Kruskal’s algorithm tailored to obtain a MST in a forest. It is impor-

tant to note that in case we do not have any obstacle, the extended Dijkstra’s algorithm will

not make any change in the graph and the extended Kruskal will simply work on a spanning

graph. Fig. 2.7 describes pseudo code for extended kruskal’s algorithm, it is taken from [11]

and included here for completion.
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2.2.2 OPMST Construction

We note that a sparse OASG does not always have direct connections between the pin

vertices even if one is allowed. This is due to a neighboring corner vertex being nearer than

the other pin vertex in the same region. These indirect detour paths are unnecessary and if not

taken care of can lead to a significant loss of quality. We note that the algorithm proposed by

[11] failed to address this issue. On the other hand, we address this problem by constructing

an obstacle penalized minimal spanning tree (OPMST) from the MTST by removing all the

corner vertices and storing detour information as the weight of an edge.

To construct an OPMST, we follow a simple strategy. For any corner vertex v, we find the

nearest neighboring pin vertex u. We connect all the pin vertices originally connected with v

to u and delete v. We update their weights as their original weight plus the weight of e(u, v).

This method guarantees that in case we have a major detour between two pin vertices due to

an obstacle, the weight of that edge will corroborate this fact. In other words we can say that

the edge would be penalized for the obstacles in its path.

2.3 OAST Generation

This step differentiates our algorithm from [13, 9, 12, 11]. We exploit the extremely fast

and efficient Steiner tree generation capability of FLUTE [2] for low degree nets. In order

to embed FLUTE in our problem we designed an obstacle aware version of FLUTE, OA-

FLUTE. As OA-FLUTE is less efficient for high degree nets and dense obstacle region, we

partition a high degree net into subnets guided by the OPMST obtained from the previous

step. The subproblems obtained after partitioning are passed on to OA-FLUTE for obstacle

aware topology generation. It is termed as obstacle aware because the nodes of the tree are

placed in their appropriate location considering obstacles around them.

Fig. 2.8 and Fig. 2.9 describe the pseudo codes for the Partition and OA-FLUTE functions.

It is evident that both functions are recursive functions. Let us first explain the Partition

function.



www.manaraa.com

19

Function: Partition(T)
Input: An OPMST T
Output: An OAST

1 If(∃ a completely blocked edge e)
2 /∗ Refer to Fig. 2.10 ∗/
3 e(u, v) is to be routed around obstacle edge e(a, b)
4 Let T = T1 + e(u, v) + T2

5 T1 = T1 + e(u, a)
6 T2 = T2 + e(u, b)
7 T ′ = Partition(T1) ∪ Partition(T2)
8 Else if(|T | > HIGH THRESHOLD)
10 /∗ Refer to Fig. 2.11(a) ∗/
11 Let e(u, v) be the longest edge s.t.

T = T1 + e(u, v) + T2 with |T1| ≥ 2 and |T2| ≥ 2
12 T ′ = Partition(T1) ∪ Partition(T2)
13 /∗ Refer to Fig. 2.11(b) ∗/
14 Refine T’ using OA-FLUTE(N”) where,
15 N” is a set of pin vertices around e(u, v) in T’
16 Else
17 T ′ = OA-FLUTE(N) where,
18 N is set of all pin vertices in T’
19 Return T’

Figure 2.8 Pseudo code for the Partition function

2.3.1 Partition

The input to the Partition function is an OPMST obtained from the last step and the output

is an obstacle-aware Steiner tree (OAST). An OAST is a Steiner tree in which the Steiner nodes

have been placed considering the obstacles present in the routing region to minimize the overall

wirelength. The following two criteria are set for partitioning pin vertices. The first criterion

is to determine if any edge is completely blocked by an obstacle. The second criterion is to

check if the size of OPMST is more than the HIGH THRESHOLD defined.

As can be clearly seen in Fig. 2.10 that for an overlap free solution, we have to route around

the obstacle. Therefore, it seems logical to break the tree at edge (u, v). We heuristically

determined that including corner vertex at this stage improves the overall wirelength but we

cannot deny that it also restricts the edge to go around the obstacle in one specified direction.

We know that OA-FLUTE can efficiently construct a tree when the number of nodes is less
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Function: OA-FLUTE(N)
Input: A Set of nodes N
Output: An OAST

1 T ′ = FLUTE(N)
2 If(∃ a completely blocked edge e)
3 e(u, v) is to be routed around obstacle edge e(a, b)
4 /∗ Refer to Fig. 2.12 ∗/
5 Let N = N1 ∪N2

6 N1 = N1 ∪ {a}
7 N2 = N2 ∪ {b}
8 T ′ = OA-FLUTE(N1) ∪ OA-FLUTE(N2)
9 Else If(∃ Steiner Node S on top of an obstacle)
10 /∗ Refer to Fig. 2.13 ∗/
11 Let a1, a2, ... , aD be the intersection points with the

obstacle ordered in anti-clockwise direction
12 Let N = N1 ∪N2 ∪ ... ∪ND ∪ {S}
13 Let (au, av) be the segment with largest weight
14 For(i = av to au in anti-clockwise order)
15 Ni = Ni∪ corner vertex along the path
16 End For
17 T ′ = OA-FLUTE(N1) ∪ ..... ∪ OA-FLUTE(ND)
18 Return T’

Figure 2.9 Pseudo code for the OA-FLUTE function

than the HIGH THRESHOLD value. If the size of the tree is still more than the HIGH

THRESHOLD after breaking at the blocking obstacles, we need to break the tree further. In

this case, we look for the edge with the largest weight on the tree and delete that edge, refer

to Fig. 2.11(a).

Based on the above mentioned criterion, if we break an obstacle edge, we simply include

corner vertices in the tree and divide the two trees as shown in Fig. 2.10. Else, if we break at

the edge with largest weight, we delete that edge and make sure that it does not contain any

leaf of the tree as shown in Fig. 2.11(a).

After breaking an edge, we make recursive calls to the Partition function using two subtrees.

When the size of the tree becomes less than the HIGH THRESHOLD, we pass the nodes of

the tree to OA-FLUTE function. The OA-FLUTE function returns an OAST. After returning

from OA-FLUTE in Partition, if the partition was performed on an obstacle edge, we simply
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Figure 2.10 An example illustrating first criterion for partitioning

(a) Partitioning (b) Local refinement

Figure 2.11 An example illustrating second criterion for partitioning

merge two Steiner trees using the same obstacle edge. In case the partition was performed

on the longest edge, we explore an opportunity to further optimize wirelength. We merge the

two trees on the longest edge and then search the region around the longest edge to extract

neighboring pin vertices, refer to lines 12-15 in Fig. 2.8 and Fig. 2.11(b). This refinement

is same as the local refinement proposed in [2]. We pass this set of nodes to OA-FLUTE for

further optimization. straightforward to replace the tree obtained after OA-FLUTE in the

original tree.

2.3.2 OA-FLUTE

The purpose of OA-FLUTE function is to form an OAST. It begins by calling FLUTE on

the set of input nodes. FLUTE constructs a Steiner tree without considering obstacles. This
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Figure 2.12 OA-FLUTE: An edge completely blocked by an obstacle

Figure 2.13 OA-FLUTE: Steiner node is on top of an obstacle

tree can have two kinds of overlap 1) an edge completely blocked by an obstacle, 2) a Steiner

node on top of an obstacle. We handle both of these cases differently.

To handle the first case, refer to Fig. 2.12, we break the Steiner tree into two subtrees

including corner points of the obstacle and make recursive calls to OA-FLUTE. We selectively

prune the number of recursive calls based on the size of the tree in order to strike a balance

between run-time and quality. Now it can give an impression that this is exactly the same

partition as the one performed in partition function. However, in partition function we included

the corner vertices but in OA-FLUTE our goal is to determine the location

To handle the second case, we devised a special technique. We pick an obstacle which

has a Steiner node on top of it. For every boundary of this obstacle intersecting with the

Steiner tree, we extract a set of nodes Ni which includes the pin vertices in the tree near to

that boundary. In Fig. 2.13 we have a single Steiner node inside the obstacle intersecting at
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a1, a2 and a3, with the right, top and left boundary of the obstacle, respectively. We extract

three set of pin vertices N1, N2 and N3 from the original Steiner tree for the right, top and

left boundary, respectively. The points a1, a2 and a3 divide the obstacle outline into three

segments as shown in Fig. 2.13. We then find the longest segment (the light shaded segment

(a3, a1) in Fig. 2.13). We then traverse from one endpoint of the longest segment to the other

endpoint via other segments in an anti-clockwise direction, for example, from a1 to c1 to a2 to

c2 to a3 in Fig. 2.13. While moving along the other segments, we keep adding corner vertices

to the corresponding Ni’s e.g. c1 gets added to both N1 and N2 and c2 gets added to both N2

and N3. We then recursively call OA-FLUTE for all Ni’s thus formed.

As our goal with OA-FLUTE is to determine befitting locations for Steiner nodes we

exclude all corner vertices while merging1. Fig. 2.12 and Fig. 2.13, indicate Steiner tree after

excluding corners while merging. The reason for not adding corner vertices in this step is

twofold. First, it is not desirable to further restrict the solution when we already did once

in Partition function. Second, we want our OA-FLUTE to be a generic function which can

preserve the number of pin-vertices provided to it, adding corner vertices would increase them.

2.4 OARSMT Generation

Figure 2.14 Different scenarios for OARSMT generation algorithm

The OAST obtained from last step does not guarantee that rectilinear path for a pin-to-pin

connection is obstacle free. In this step, we rectilinearize every pin-to-pin connection avoiding

obstacles to generate an OARSMT. For every Manhattan connection between two pins we

can have two L-shape paths. On the basis of the obstacles inside the bounding box formed
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by an edge, we can divide all the possible scenarios into four categories: 1) both L-paths are

clean 2) both L-paths are blocked by the same obstacle 3) only one L-path is blocked 4) both

L-paths are blocked but not by the same obstacle. We discuss these scenarios one by one in

the following paragraphs. The Fig 2.14 illustrates different scenario explained in paragraph

above.

For the first case, even though we can rectilinearize using any L-path, we instead create

a slant edge at this stage to leave the scope for improvement in V-shape refinement. For the

second case, we have no option but to go outside the bounding box and pick the least possible

detour.

For the third case, we route inside the bounding box, since there exists a path. We break

the edge into two sub problems on the corner of an obstacle along the blocked L-path. We

recursively solve these sub problems to determine an obstacle-avoiding path. If the wirelength

of this path is same as the Manhattan distance between the pins, we accept the solution, else

we route along the unblocked L-path. It is noteworthy that for this case we could have directly

accepted the unblocked L-path. In order to create more slant edges, and hence, further scope

for V-shape refinement, we searched for a route along the blocked L-path avoiding obstacles.

For the last case where both L-paths are blocked but not by the same obstacle, we determine

obstacle-avoiding routes using the same recursive approach as mentioned above for both L-

paths and pick the smallest one.

2.5 Refinement

We perform a final V-shape refinement to improve total wirelength. This refinement in-

cludes movement of Steiner node in order to discard extra segments produced due to previous

steps. The concept of refinement is similar to the one that determines a Steiner node for any

three terminals. The coordinates of the Steiner node are the median value of the x-coordinates

and median value of the y-coordinates. Fig. 2.15 illustrates a potential case for V-shape re-

finement and output after refinement. This refinement comes handy in improving the overall

wirelength by 1% to 2%.



www.manaraa.com

25

Figure 2.15 V-shape refinement case and refined output
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CHAPTER 3. EXPERIMENTAL RESULTS

3.1 Using benchmarks with obstacles

We implemented our algorithm in C. The experiments were performed on a 3GHz AMD

Athlon 64 X2 Dual Core machine. We requested for binaries from Long et al. [11], Lin et al.

[9], Liang et al. [8] and ran them on our platform. We could not get binary from Liu et al.

[10], which is the most recent work, on time to include in the paper. We report their results as

provided in their paper. Table 3.1 shows Wirelength and CPU run time comparison with them.

There are four sets of benchmarks. Five industrial test cases are from Synopsys(IND1 - IND05),

twelve circuits are from [9] (RC01-RC12), five randomly generated benchmark circuits (RT01-

RT05) [9] and five large benchmark circuits (RL01-RL05) generated by [11]. We determined

experimentally that HIGH THRESHOLD value of 20 works the best. obstacles we used a

simpler implementation with a sorted list for obstacles. This could result in a complexity

of O(n2). But, we were still able to achieve fastest results as compared to all approaches

mentioned in Section 1.

As shown in last row, column 4, 5 and 7, of Table 3.1, on an average over all benchmarks,

our wirelength results outperform Lin et al. [9] by 2.3% and Long et al. [11] by 2.7% and Liu

et al. [10] by 0.4%. But column 6 indicates that our results are 0.5% longer as compared to

Liang et al.[8]. This could be attributed to the fact that they use maze routing approach.

Our results also indicate that our algorithm performs better in terms of quality in all

higher order (RC07 - RC12)(RL01 - RL05) benchmarks than Liu et al. and we are just 0.1%

longer than Liang et al. and 30 times more efficient in CPU run time. We believe that

larger benchmarks with more number of pin vertices and more number of obstacles (similar to

RC12) are more scalable in industry and we outperform all other existing approaches in these
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Wirelength
Benchmark m k Lin[9] Long[11] Liang[8] Liu[10] Ours

RC01 10 10 27790 26120 25980 26740 25980
RC02 30 10 42240 41630 42010 42070 42110
RC03 50 10 56140 55010 54390 54550 56030
RC04 70 10 60800 59250 59740 59390 59720
RC05 100 10 76760 76240 74650 75430 75000
RC06 100 500 84193 85976 81607 81903 81229
RC07 200 500 114173 116450 111542 111752 110764
RC08 200 800 120492 122390 115931 118349 116047
RC09 200 1000 117647 118700 113460 114928 115593
RC10 500 100 171519 168500 167620 167540 168280
RC11 1000 100 237794 234650 235283 234097 234416
RC12 1000 10000 803483 832780 761606 780528 756998

RT01 10 500 2289 2379 2231 2259 2191
RT02 50 500 48858 51274 47297 48684 48156
RT03 100 500 8508 8554 8187 8347 8282
RT04 100 1000 10459 10534 9914 10221 10330
RT05 200 2000 54683 55387 52473 53745 54598

IND1 10 32 632 639 619 626 604
IND2 10 43 9700 10000 9500 9500 9500
IND3 10 59 632 623 600 600 600
IND4 25 79 1121 1130 1096 1095 1129
IND5 33 71 1392 1379 1360 1364 1364

RL01 5000 5000 492865 491855 481813 - 483027
RL02 10000 500 648508 638487 638439 - 637753
RL03 10000 100 652241 641769 642380 - 640902
RL04 10000 10 709904 697595 699502 - 697125
RL05 10000 0 741697 728585 730857 - 728438

(1.023) (1.027) (0.995) (1.004) (1)

Table 3.1 Wirelength comparison for OARSMT benchmarks; m is the number of pin vertices
and k is the number of obstacles; The values in the last row are normalized over our
results.
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Runtime(s)
Benchmark m k Lin[9] Long[11] Liang[8] Ours

RC01 10 10 0.00 0.00 0.01 0.00
RC02 30 10 0.00 0.00 0.02 0.00
RC03 50 10 0.00 0.00 0.00 0.00
RC04 70 10 0.00 0.00 0.01 0.00
RC05 100 10 0.00 0.00 0.01 0.00
RC06 100 500 0.10 0.08 0.50 0.03
RC07 200 500 0.18 0.09 0.60 0.04
RC08 200 800 0.31 0.15 1.16 0.07
RC09 200 1000 0.40 0.22 1.53 0.09
RC10 500 100 0.20 0.03 0.18 0.02
RC11 1000 100 0.74 0.06 0.83 0.04
RC12 1000 10000 55.09 3.80 186.3 2.65

RT01 10 500 0.03 0.06 0.19 0.01
RT02 50 500 0.05 0.06 0.55 0.02
RT03 100 500 0.10 0.06 0.21 0.03
RT04 100 1000 0.22 0.23 0.37 0.09
RT05 200 2000 0.96 0.66 3.18 0.26

IND1 10 32 0.00 0.00 0.00 0.00
IND2 10 43 0.00 0.00 0.00 0.00
IND3 10 59 0.00 0.00 0.00 0.00
IND4 25 79 0.00 0.00 0.00 0.00
IND5 33 71 0.00 0.00 0.00 0.00

RL01 5000 5000 106.66 3.58 27.14 3.01
RL02 10000 500 159.09 1.27 29.45 1.07
RL03 10000 100 153.95 1.08 23.35 1.04
RL04 10000 10 195.25 0.97 22.00 1.39
RL05 10000 0 217.88 0.96 33.64 1.5

891.25(78.45) 13.36(1.196) 331.235(30) 11.36(1)

Table 3.2 CPU Runtime comparison for OARSMT benchmarks; The values in the last row are
summation for all benchmakrs, and normalized over our results.
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Wirelength
Benchmark m k Long[11] Liang[8] FLUTE-2.5[2] FLUTE-3.0 Ours

RC01 10 0 25290 25290 25290 25290 25290
RC02 30 0 40100 40630 39920 39920 39920
RC03 50 0 52560 52440 53440 52880 53050
RC04 70 0 55850 55720 57020 55300 55380
RC05 100 0 72820 71820 73370 73220 72170
RC06 100 0 77886 78068 80057 77171 77633
RC07 200 0 106591 107236 109232 106743 106581
RC08 200 0 109625 109059 112787 108495 108815
RC09 200 0 109105 108101 112460 107729 108106
RC10 500 0 164940 164450 170270 169380 164040
RC11 1000 0 233743 235284 245325 231730 233600
RC12 1000 0 755332 764956 798742 748464 755060

RT01 10 0 1817 1817 1817 1817 1817
RT02 50 0 44930 46109 45291 44685 44416
RT03 100 0 7677 7777 7811 7652 7745
RT04 100 0 7792 7826 7826 7827 7792
RT05 200 0 43335 43586 44809 42943 43026

IND1 10 0 614 619 604 604 604
IND2 10 0 9100 9100 9100 9100 9100
IND3 10 0 590 590 587 587 587
IND4 25 0 1092 1092 1102 1102 1102
IND5 33 0 1314 1304 1307 1307 1307

RL01 5000 0 472392 473905 501480 471137 472757
RL02 10000 0 637131 641722 674042 635287 636689
RL03 10000 0 641289 650343 674950 639183 640342
RL04 10000 0 697712 699617 742070 695526 697086
RL05 10000 0 728595 730857 778313 726245 728438

(1.002) (1.006) (1.026) (0.998) (1)

Table 3.3 Wirelength comparison for RSMT benchmarks; m is the number of pin vertices; Note
that it does not have any obstacles, hence k is 0 for all benchmarks.

benchmarks due to our highly efficient steiner tree generation tool, OA-FLUTE.

For the run time shown in Table 3.2, we are 20% faster than Long et al. [11] on average. We

are 33 times faster than [8] and 88 times faster than [9]. We could not make a direct comparison

between the run times of Liu et al. as we could not run their binary on our platform.

We can conclude from the above discussion that existing heuristics improve either run time

or wirelength but not both.s Our algorithm improves both in terms of quality and run time as

compared to the algorithms [13], [9] and [11], of its kind. Also we have the best results both for

wirelength and run time for higher-order benchmarks(RC12, RL01-RL05), when compared to

[8] and [10] which indicates the applicability of our algorithm to industrial standard circuits.
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Runtime(s)
Benchmark m k Long[11] Liang[8] FLUTE-2.5[2] FLUTE-3.0 Ours

RC01 10 0 0 0 0.000051 0.000012 0.000317
RC02 30 0 0 0 0.000203 0.000076 0.000527
RC03 50 0 0 0 0.000319 0.000322 0.001242
RC04 70 0 0 0 0.000408 0.000446 0.001566
RC05 100 0 0 0 0.000404 0.000625 0.002019
RC06 100 0 0 0 0.000486 0.000664 0.002071
RC07 200 0 0.012 0.02 0.000731 0.001545 0.004096
RC08 200 0 0.004 0.03 0.000684 0.001553 0.005261
RC09 200 0 0.016 0.02 0.000717 0.001523 0.004074
RC10 500 0 0.024 0.17 0.001605 0.006988 0.014066
RC11 1000 0 0.068 0.7 0.003444 0.061217 0.032900
RC12 1000 0 0.044 0.75 0.003498 0.03568 0.032603

RT01 10 0 0.012 0 0.000089 0.000020 0.000442
RT02 50 0 0 0 0.000329 0.000330 0.001399
RT03 100 0 0 0 0.000480 0.000617 0.002495
RT04 100 0 0 0 0.000383 0.000644 0.002182
RT05 200 0 0.04 0.02 0.000715 0.001652 0.004243

IND1 10 0 0 0 0.000900 0.000016 0.000412
IND2 10 0 0 0 0.000830 0.000014 0.000397
IND3 10 0 0 0 0.000096 0.000016 0.000424
IND4 25 0 0 0 0.000170 0.000052 0.000585
IND5 33 0 0 0 0.000198 0.000083 0.000612

RL01 5000 0 0.388 11.39 0.055283 0.463103 0.361255
RL02 10000 0 0.956 32.45 0.259335 1.739664 1.167446
RL03 10000 0 0.956 33.04 0.260298 1.718425 1.149940
RL04 10000 0 0.992 32.26 0.255205 1.003005 1.442818
RL05 10000 0 1.052 34.52 0.257259 1.232832 1.556124

4.528(0.78) 145.37(25) 6.27(1.082) 1.104(0.19) 5.79(1)

Table 3.4 CPU Runtime comparison for RSMT benchmarks

3.2 Using benchmarks without Obstacles

As our algorithm performs efficiently for all benchmarks with obstacles we were curious to

compare its performance for benchmarks without obstacles. The problem formulates to RSMT

construction as mentioed above and has been studied by numerous researchers in the past.

The work by Wong et al. [15] shows that FLUTE 3.0 has best results for this problem.

One of the goals of our research was also to create a tool which can work efficiently in

presence as well as absence of obstacles. In order to excercise this, we removed obstacles from

our previous benchmarks and compared our results with results from Liang et al. [8] , Long

et al. [11], FLUTE-3.0 [15] and FLUTE-2.5 [2]. Table 3.3 depicts comparison of wirelength

with various work listed above, the last row is an average of our result compared with the

results in respective column over all the benchmarks. It can be seen that we perform 2.6%

better as compared with FLUTE-2.5. Our results are also better as compared with [11] and

[8] indicating our approach can be used as a complete solution for Steiner tree construction in
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absence as well as presence of obstacles. Column 6 shows our results are slightly worst than

FLUTE-3.0 which has the best results for this category.

CPU runtime results in Table 3.4 enumerate that FLUTE-2.5 is much better in terms of

execution time as compared with all the approaches, the last row is summation of total runtime

over all the benchmarks. Our results in Column 7 as compared with all Liang et al. [8], the

maze routing approach, are 25X faster which is not surprising considering that maze routing

approach is generally time consuming. We are also slower 22% slower as compared with Long

et al. [11]. Since our work is based on FLUTE-2.5, we believe that with code optimization we

should be able to achieve same speed as FLUTE-2.5 for benchmarks without obstacles.
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CHAPTER 4. CONCLUSION

In this thesis we have presented an algorithm to construct obstacle-avoiding rectiliear

Steiner tree (OARSMT) based on extremely fast and efficient Steiner tree generation tool

called FLUTE. We propose a novel octant based OASG algorithm with linear number of

edges which possess certain desirable properties as compared with previous heuristics. We

also propose an obstacle aware version of FLUTE, OA-FLUTE which can be used efficiently

for low-degree nets. To handle high degree nets and dense obstacle region we use a top-down

partition approach with FLUTE. We also illustrate the capacity of our algorithm to handle

benchmarks which does not contain obstacles and observe that it performs well as compared

with other algorithms of its kind.

Summarizing we can say that OARSMT problem has become more important then ever for

modern nanometer IC designs which need to consider numerous routing obstacles incurred from

pre-routed nets, IP blocks etc. It is required for an algorithm to handle Steiner tree construction

in presence as well as absence of obstacles with good quality and fast CPU runtime. Our

experiments prove that our algorithm obtains a good quality solution with excellent run-time

as compared with its peers.

A part of this thesis was submitted for a VLSI CAD conference and it got accepted, the

paper is supposed to come out in March 2010 but it can be referred here [1].
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CHAPTER 5. FUTURE WORK

Our current solution produces good quality results but there is always a room for enhance-

ment. Due to time restriction while implementing our algorithm we used a very basic data

structure to represent obstacle information i.e. a sorted list. This data structure could result

in runtime complexity of O(n2) in worst case while checking an edge to be completely blocked

by any obstacle in the list. Hence, as a future work we propose using a B-tree data structure to

represent obstacle list which will guarantee O(n log n) complexity for all cases and will reduce

runtime for our algorithm. For the benchmarks which does not have obstacles our algorithm

should theoretically be as fast as FLUTE 2.5 though our results seems to disagree to this. We

believe there is a wide scope for code optimization possible in current implementation which

can make this possible.

As modern nanometer IC designs are processed layer by layer it is a new challenge for

designers to deal with the multi-layer OARSMT (ML-OARSMT) problem where pins between

different layers are connected by vias. Apart from total wirelength, for ML-OARSMT con-

struction, router has to also take care of constraints such as number of vias, and the DRC

rules. Moreover, most of the pins of standard cell are located in lower layers, while many pins

of macro cells are located in higher layers. Therefore the router should be able to connect all

the pins of a net, no matter on which layers these pins are. Hence, we see a useful and a strong

extension of our algorithm to handle ML-OARSMT problem.
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APPENDIX

FLUTE

An excerpt taken from [2]

FLUTE is based on a very fast and accurate lookup table algorithm used for RSMT con-

struction. A net of degree n is a set of n pins. In [2] author show that the set of all degree-n

nets can be partitioned into n! groups according to relative positions of their pins. For each

group, the optimal wirelength of any net can be found based on a few vectors called potentially

optimal wirelength vectors (POWVs). Each POWV corresponds to a linear combination of

distances between adjacent pins. Some of the POWVs are pre-computed and stored into a

Lookup table. Associated with each POWV, also stored is corresponding Steiner tree, which is

termed as potentially optimal Steiner tree (POST). To find the optimal RSMT of a net, we just

need to compute the wirelengths corresponding to the POWVs for the group the net belongs

to, and then return the POST associated with the POWV with the minimum length. This

lookup table idea can optimally and efficiently handle low-degree nets (up to degree 9). For

high degree nets, the author’s propose a net breaking technique to recursively break a net until

the table can be used. The runtime complexity of FLUTE with fixed accuracy iis O(nlogn)

for a net of degree n.
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